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 Abstract
Background: Maintenance of problematic drug use is believed to be influenced by conscious explicit memory processing, such as the 
processing involved in recognition memory. Few studies have examined recognition memory in drug users, but it is not known whether this 
memory process becomes biased towards appetitive cues in substance abusing populations. In this functional magnetic resonance imaging 
(fMRI) study, we examined explicit recognition memory for cocaine and neutral picture stimuli in cocaine users and controls. 

Methods: During the study phase of a recognition memory task, 20 non-treatments seeking, chronic cocaine smokers (15M; 5F) and 17 
age-matched controls (13M; 4F) viewed cocaine and neutral picture cues. During test, participants were instructed to discriminate previously 
viewed and new cocaine and neutral cues one at a time. Blood oxygenation level dependent (BOLD) data were collected while participants 
indicated whether they previously had seen the cue. 

Results: Cocaine users (vs. controls) showed a significantly enhanced activation in 10 brain regions during correct old/new recognition 
of cocaine (vs. neutral) cues. These areas in cocaine users included drug cue reactivity-related and recollection-based regions. Behavioral 
data showed that recognition accuracy (d’) for cocaine cues was significantly greater in cocaine (vs. control) group; there were no group 
differences for neutral cues. 

Conclusions: Behavioral data showed that recognition memory processing in cocaine users compared to controls was biased towards 
appetitive cocaine cues. Imaging results suggested that in cocaine users, but not controls, correct recognition of cocaine cues activated both 
drug cue reactivity-related and recollection-based areas that may promote cocaine use behavior.
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Introduction
Explicit memory processes, also referred as controlled, 
episodic, or declarative memory [1], require attention and 
conscious awareness, and are often strategy-based. These 
processes are initiated intentionally and are influenced by 
encoding strategies and depth of processing [2]. One of the 
commonly studied explicit memory phenomena is recognition 
memory, measured as an individual’s ability to correctly 
identify whether a stimulus has been seen previously or is 
‘new.’ The ability to identify previously seen emotionally 
charged events and cues (i.e., memory bias), for example, is 
likely linked to efficiently negotiating the world and to survival 
[3]. Earlier studies in cognitive neuroscience have focused 
on identifying the neuronal networks that underlie explicit 
memory processing [4, 5]. The results of functional magnetic 
resonance imaging (fMRI) studies suggest that in healthy 
controls, correct recognition is associated with an increased 
activation in brain areas involved in conscious recollection [6, 
7, 4, 8]. The brain regions that have been most often associated 
with correct recognition of previously presented stimuli are 

middle frontal gyrus, temporal and occipital regions [6, 7, 4, 
5, 8]. Similar areas of temporal activation have been observed 
during correct recognition of previously seen faces [7] and 
words [8], and correct word recognition activated the middle 
frontal gyrus as well [8]. 

The recognition memory phenomenon has been little studied 
in substance abusing populations. We are aware of only one 
fMRI study that examined explicit recognition memory in 
cocaine smoking women who were additionally HIV-infected 
[9]. Meyer and colleagues found that compared to women who 
never used cocaine, activation in the bilateral prefrontal cortex 
was lower in current and former cocaine users during correct 
recognition of word stimuli that were neutral in nature. The 
questions of whether recognition memory is sub served by the 
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same neural network in cocaine smokers as in healthy controls, 
and whether cocaine-related stimuli differentially facilitate 
explicit recognition compared to neutral stimuli may be 
particularly relevant to understanding visual drug cue reactivity 
in chronic cocaine and other drug users. Maintenance of drug 
use is believed to be influenced in part by explicit memory 
processing [10-12] and by appetitive cue reactivity [13]. 
Similar to emotional cues, appetitive cues, including drug and 
alcohol cues, can create attentional bias [14, 15], a mechanism 
that has received more research attention compared to memory 
bias mechanisms. These two biases have seldom been linked 
in the literature [16]. The demonstration of memory bias for 
drug cues over neutral cues would extend the growing drug 
cue exposure literature showing that exposure to drug cues can 
induce subjective craving as well as the reward network brain 
activation [13]. Fuller understanding of explicit memory bias 
in cocaine users towards appetitive cocaine stimuli compared 
to neutral stimuli will expand our understanding of the 
neurocognitive processes that support cocaine use behaviors 
and could further aid in designing intervention strategies. 

The present study thus examined (1) whether in non-treatment 
seeking cocaine smokers’, compared to non-cocaine using 
controls’, explicit recognition memory was biased by 
appetitive cocaine-related compared to neutral picture cues, 
and (2) whether there is an increased neural activation in 
cocaine smokers compared to controls during correct old/
new recognition of cocaine cues versus neutral cues. Correct 
recognition was examined using a recognition sensitivity 
measure d-prime (d´) defined as an individual’s ability to 
correctly identify a picture cue that previously was viewed 
during the study phase as ‘old’ and to correctly identify a cue 
that had not previously been seen as ‘new’ [17]. 

This fMRI study was conducted in the context of a cue 
reactivity study [18], wherein we collected fMRI data during a 
recognition memory task from non-treatment seeking cocaine 
smokers who had been abstinent from cocaine for 72 hours and 
similarly-aged, healthy control participants with no cocaine 
experience. The use of picture cues in the present study was 
motivated by the finding that chronic drug and alcohol use 
behaviors are frequently triggered by the sight of substance-
related cues in the environment. For example, the image of 
a favorite alcoholic drink induces alcohol craving due in part 
due to activation of past memories related to alcohol use in 
alcohol dependent individuals [19]. We hypothesized, due 
to increased salience of appetitive cocaine cues in chronic 
cocaine users compared to controls, that the cocaine users 
would demonstrate enhanced activation in cue reactivity 
related brain areas, such as the prefrontal and limbic brain 
regions [13] and also higher levels of recognition accuracy for 
cocaine cues compared to neutral cues due to the increased 
salience of appetitive cocaine cues in this group. Due to the 
lack of earlier drug cue recognition memory studies in cocaine 
users whose neurocognitive functioning is not complicated 
by HIV or other obfuscating conditions, we explored how the 
two groups differed in their activation of recollection-based 
brain areas, such as hippocampus and parahippocampal gyrus 

[5], middle frontal gyrus, and occipital regions, during the 
recognition memory task.

Methods
Participants

Twenty (15M; 5F) non-treatment seeking cocaine smokers 
who were abstinent from cocaine use for 72 hours, and 17 
(13M; 4F) age-, education-, and ethnic background-matched 
healthy participants took part in the study. Participants were 
recruited from the Substance Use Research Center at Columbia 
University Medical Center, by advertising in local newspapers, 
and by word-of-mouth. The main inclusion criteria for the 
study participants included English as first language, right 
handedness, near 20/20 vision (or corrected), and no report of 
childhood learning disability or special education. In this study, 
all cocaine smokers were only misusing cocaine. The main 
exclusion criteria for the study participants included serious 
medical conditions, a history of psychiatric or neurological 
disorder or treatment, lifetime diagnosis of any substance use 
disorder on the part of the prospective participant’s biological 
mother (to rule out prenatal exposure effects), alcohol abuse 
and dependence (including past dependence on alcohol), 
MRI contraindications, and for women, pregnancy. Groups 
did not differ in alcohol use quantity, cigarette use frequency 
and quantity, and caffeine use frequency and quantity. Of the 
20 cocaine smokers, 13 met a DSM-IV-R diagnosis of either 
abuse or dependence for cocaine, whereas 7 did not meet these 
diagnostic criteria as confirmed by SCID [20]. Although these 
seven individuals were heavy cocaine users, they were non-
treatment seeking and thus reported no distress from their use, 
a defining feature of the diagnosis. On the day of scanning, 
all participants provided written informed consent approved 
by the Rutgers University Institutional Review Board, and 
were administered a urine screen to rule out pregnancy in 
women and to ensure negative urine toxicology for cocaine, 
methamphetamine, THC, opiates, and benzodiazepines (One 
Step Multi-Drug Screen Test Panel). They were also assessed 
for recent alcohol use with a breathalyzer. At the end of the day, 
participants were paid for their transportation and received a 
gift certificate worth $100 for their participation. 

Stimuli

Study Phase of the Recognition Memory Task. Participants 
viewed 30 cocaine-related picture stimuli (15 unique stimuli 
that were presented twice) and 30 neutral picture stimuli (15 
unique stimuli that were presented twice). Cocaine stimuli, 
selected from pictures kindly supplied by Dr. Rita Goldstein 
(Icahn School of Medicine, Mount Sinai) and Dr. Robert Hester 
(The University of Melbourne), included pictures of smoke 
able cocaine, paraphernalia, and people smoking cocaine. 
Examples of neutral stimuli included pictures of nature scenes 
[21, 22]. Neutral stimuli were selected from non-copyrighted 
images on the internet. These stimuli are available on request 
from the author. Cocaine and neutral stimuli were matched in 
terms of complexity. Test phase of the Recognition Memory 
Task. A total of 60 picture stimuli were used: 15 previously 
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viewed and 15 new cocaine picture stimuli, and 15 previously 
viewed and 15 new neutral picture stimuli.

Procedure
Recognition Memory Task

Study Phase

During the study phase of the recognition memory task, 
participants viewed two blocks of cocaine picture cues and two 
blocks of neutral picture cues presented in a counterbalanced 
manner across participants, with the constraint that two blocks 
of the same stimulus type were not presented in succession. 
Stimuli (either cocaine or neutral) presented in the first 
block were repeated in the second block. Each stimuli block 
(15 cocaine or neutral picture cues) lasted for 90 seconds. 
Stimuli within the blocks were randomly presented and each 
stimulus was presented for 4 seconds followed by a fixation 
cross that remained for 2 seconds. A trigger pulse from the 
MRI console was used to synchronize stimulus presentation 
with fMRI acquisition. These fMRI cue reactivity data have 
been reported in Ray et al. [18]. After the study phase was 
completed, participants took part in a picture/non-picture 
decision paradigm which utilized a completely separate set 
of pictures and served as a distractor prior to the recognition 
memory task.

Test phase

During the test phase of the recognition memory task, 
participants viewed the 60 picture cues in a random order. 
Each cue appeared for 4 seconds on the screen and the 
participant indicated whether or not he/she previously had 
seen the cue during the study phase by pressing the appropriate 
mouse button. A trigger pulse from the MRI console was used 
to synchronize stimulus presentation with fMRI acquisition. 
The task was developed using E-prime (Psychology Software 
Tools, Inc., Pittsburgh, PA). Finally, participants’ cocaine 
craving ratings were collected at the completion of the fMRI 
recognition session using the 10-item CCQ-Brief questionnaire 
[23].

Image Acquisition

A 3T Siemens Trio scanner and Siemens 12 channel head coil 
were used to acquire the fMRI data. Functional imaging was 
done using a single-shot gradient echo-planar EPI sequence 
(TR=2000 ms, TE=25 ms, flip angle=90°, matrix=64x64, 
FOV=192 mm). Thirty-five contiguous oblique axial 
slices (1 mm gap; 3x3x3 mm voxels) parallel to the AC-
PC line were obtained. Anatomical images were acquired 
using a T1-weighted protocol (TR=1900 ms, TE=2.52 ms, 
matrix=256x256, FOV=256 mm, 176 1-mm sagittal slices 
with .5 mm gap) [18].

Image Analysis

Image preprocessing and data analysis were performed using 
FSL 6.00 software (FMIRB’s Software Library, www.fmirb.
ox.ac.uk/fsl). Registration to high resolution structural and/or 
standard space images was carried out using FLIRT [24, 25]. 

Functional images were high-pass filtered (Gaussian-weighted 
least-squares straight line fitting, with sigma = 25.0s); skull 
stripped using BET [26] ; motion corrected using MCFLIRT 
[25]; and smoothed using a Gaussian kernel of FWHM 6 
mm. No slice timing correction procedure was used for the 
following reasons: 

i. the hemodynamic response of 6-20 seconds makes slice 
timing correction for short TRs (in the present study, it 
is 2 seconds) irrelevant, and 

ii. FSL, the software we used to conduct data analysis, 
does not recommend using slice timing correction [18]. 
Participants displaying higher than 1 mm mean frame-
wise displacement were planned to be removed from 
further analysis.

To model correct recognition (or recognition accuracy) for 
cocaine and neutral cues, a Gaussian hemodynamic response 
function (HRF) and its temporal derivatives were applied 
to the basic waveform. Blood oxygenation level dependent 
(BOLD) scans for each participant were registered first to his 
or her high-resolution anatomical (MPRAGE) scan, and then 
registered to standard space using the FSL’s MNI (Montreal 
Neurologic Institute) template. A two-level statistical analysis 
approach was used. The first level analysis was directed at 
brain activity related to recognition accuracy for cue type, 
that is, cocaine cues versus neutral cues. At the first level, two 
predictors were coded to represent mean activation while we 
measured recognition accuracy for cocaine cues and that for 
neutral cues. Mean brain activation was analyzed by a GLM 
for each predictor in individual participants using FEAT (FMRI 
Expert Analysis Tool). Moreover, the cocaine cues predictor 
was contrasted to the neutral cues predictor: cocaine cues > 
neutral cues. The results were then entered into a higher (i.e., 
group) level analysis using FLAME 1 mixed-effects [39]. In 
the group-level whole brain analysis, average activation was 
determined for each group (cocaine users and controls) as well 
as the difference between the groups (cocaine users > controls) 
for a total of 33 participants. Group level statistic images 
were thresholded using clusters determined by z > 2.33 and 
a (corrected) cluster significance threshold of p < .001 [26].

Behavioral Data Analysis 

Mean accuracy and error rates for the cocaine and neutral 
picture cue categories were calculated for each participant. 
Accuracy rates consisted of hit rates and correct rejection rates. 
Error rates consisted of false positive response rates and miss 
response rates. False positives were defined as the number of 
new picture cues that were mistakenly recognized as seen in 
the study phase. Misses were defined as the number of pictures 
previously seen in the study phase that the participant failed 
to recognize. Hit and false positive rates were computed for 
each picture cue category. A signal detection measure of 
recognition sensitivity (d´) was obtained from these ratings 
[27, 17]. D-prime (d´) was defined as an individual’s ability 
to correctly identify a picture cue that previously was viewed 
during the study phase as ‘old’ and to correctly identify a cue 
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that had not previously been seen as ‘new’ [17]. A repeated 
measures analysis of variance (ANOVA) was conducted to 
examine the effects of picture cue type (two within subjects 
repeated measures: neutral and cocaine), group (two between-
subject conditions: cocaine and control), and their interaction 
on recognition memory performance. Whether memory for 
the two picture cue categories was different across the two 
groups was tested by the within-subject-by-between-subject 
interaction terms.

Results
Imaging Results

One cocaine participant’s data were excluded from the 
analysis as he/she did not perform the recognition memory 
task (n = 19). Three control participants’ fMRI data were 
excluded from the analysis: one for excessive head motion 
and two for technical failure (n = 14). For the cocaine group, 
the mean absolute displacement was .20 millimeters (mm) 
(SD = .09 mm) and the mean relative displacement was 
.13 mm (SD = .06 mm). For the control group, the mean 
absolute displacement was .23 mm (SD = .27 mm) and the 
mean relative displacement was .13 mm (SD = .10 mm). A 
group level independent sample t-tests revealed that groups 
did not differ in mean absolute displacement (p = 0.702) or 
mean relative displacement (p = 0.885). As shown in Figure 1, 
group level analysis revealed that cocaine users compared to 
controls showed significantly enhanced activation in 10 brain 
areas when recognition accuracy was measured for cocaine 
cues compared to neutral cues (2 significant clusters; cluster 
sizes = 1677 voxels and 1834 voxels): frontal pole (bilateral); 
superior frontal gyrus (left); middle frontal gyrus (left); middle 

temporal gyrus-posterior division (left); middle temporal 
gyrus-temporooccipital part (left); inferior temporal gyrus-
tempooccipital part (left); lateral occipital cortex-inferior 
division (left); frontal medial cortex (left); subcallosal cortex 
(left); paracingulate gyrus (left) (Table 1). The anatomical ROI 
masks from the Harvard-Oxford Cortical and the Harvard-
Oxford Subcortical Structural Atlases implemented in 
FSLView were used to identify the 10 brain areas. In contrast, 
the control group did not show any significant activation in 
frontal medial cortex, subcallosal cortex, and paracingulate 
gyrus (cue reactivity-related areas) when recognition accuracy 
was measured for cocaine cues.

The group level analysis further showed that cocaine users 
compared to controls did not show significantly lower activation 
in any brain area even at the lowest activation threshold (z > 
1.65, p < .05) while recognition accuracy was measured for 
neutral visual cues, contrary to Meyer and colleagues (2014). 

Behavioral Results

There was no significant main effect of picture cue type [F (1, 34) 
= .16, p = .69] or group [F (1, 34) = 1.00, p = .32] on recognition 
sensitivity. The interaction between picture cue type and group 
was significant, F (1, 34) = 14.13, p = .001, partial eta2 = .294 (see 
Figure 2). As shown in Figure 2, correct recognition (measured 
in terms of d´) for cocaine cues was significantly greater in the 
cocaine group compared to the control group, t (34) = 3.11, p < 
.01. No group differences were observed for neutral cues. Analysis 
of the craving data showed that cocaine users rated their craving 
state higher than did controls [t (34) = 6.09, p < 0.001; 3.27 (SD 
= 1.49) vs. 1 (SD = 0)].

Discussion

Note: Slices are in z direction.
Blue colored areas indicate anatomical ROI masks from the Harvard-Oxford Cortical Structural Atlases implemented in FSL 
View. Anatomical ROI masks are overlaid onto the activation.
Figure 1: Brain areas that showed a significantly enhanced activation (orange) in cocaine users (vs. controls) while recognition 
accuracy was measured for cocaine (vs. neutral) cues.
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The overall objective of this study was to examine behavioral 
and neural correlates of explicit recognition memory for 
appetitive cocaine and neutral picture cues in non-treatment 
seeking chronic cocaine users compared to controls. During 
the study phase of the recognition memory task, participants 
viewed cocaine and neutral picture cues. During the test 
phase of the recognition memory task, they were asked to 
indicate whether they had seen the cue earlier in the study. 
Consistent with the hypothesis, the cocaine users compared 

to controls demonstrated significantly enhanced activation in 
prefrontal and limbic cue reactivity-related brain areas while 
correct recognition was measured for cocaine visual cues 
compared to neutral visual cues. In fact, the control group 
showed no significant activation in these cue reactivity areas. 
In addition to the drug cue reactivity-related areas, chronic 
smokers of cocaine compared to controls also demonstrated 
increased activation in recollection-based brain areas such as 
the middle frontal gyrus, temporal, and occipital regions when 

Harvard-Oxford Cortical/Subcortical Atlas Label z-value x y z
Frontal Pole - - - -

Right 2.74 6 62 -6

Left 2.94 -8 58 -6

Superior Frontal Gyrus (L) 2.9 -22 32 40

Middle Frontal Gyrus (L) 2.73 -28 26 38

Middle Temporal Gyrus posterior division (L) 3.31 -58 -36 -2

Middle Temporal Gyrus temporooccipital part (L) 3.41 -54 -60 4

Inferior Temporal Gyrus  temporooccipital part (L) 2.84 -52 -56 -8

Lateral Occipital cortex inferior division (L) 3.18 -54 -64 4

Frontal Medial Cortex (L) 2.91 -8 48 -12

Subcallosal Cortex (L) 2.56 -6 30 -14

Paracingulate gyrus (L) 2.51 -8 34 28

Note: L= Left. 
The anatomical ROI masks from the Harvard-Oxford Cortical and the Harvard-Oxford Subcortical Structural Atlases implemented 
in FSLView were used to identify the brain areas.
Activation is described by a z-value, related to the intensity of activation and x ,y, z coordinates in standard MNI brain space. Group-
level statistic images were thresholded using clusters determined by z > 2.33 and a (corrected) cluster significance threshold of 
p < 0.001.
Table 1: Ten brain areas that showed a significantly enhanced activation in cocaine users compared to controls while measuring 
correct recognition for cocaine cues relative to neutral cues.
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Figure 2: Correct recognition measured in term of recognition sensitivity (d’) for cocaine cues was significantly greater in the 
cocaine group compared to the control group. No significant group differences were observed for neutral cues. 
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correctly recognizing cocaine picture cues relative to neutral 
picture cues. This finding for recollection-based brain areas is 
consistent with the results of earlier studies that investigated 
neural underpinnings of the explicit recognition memory 
phenomenon in healthy controls [4-8]. To our knowledge, 
this is the first fMRI study that examined explicit recognition 
memory of appetitive cocaine and neutral stimuli in chronic 
cocaine users by utilizing a visual cue memory task. 

The present results extend the addiction cognitive neuroscience 
literature by demonstrating that in chronic cocaine smokers, 
explicit recognition of appetitive cocaine-related cues not only 
produces activation in recollection-based brain areas, but it 
also produces activation in the drug cue reactivity-related brain 
areas. More specifically, cocaine users (vs. controls) showed 
an enhanced activation in prefrontal and limbic cue reactivity-
related brain areas, such as frontal medial cortex, subcallosal 
cortex, and paracingulate gyrus, that have been associated with 
drug cue reactivity [19, 13, 18]. Notably, the involvement of 
subcallosal cortex in chronic users of cocaine during explicit 
recognition of cocaine picture cues suggests activation of 
a motivational/drive circuit which plays an essential role in 
drug addiction [29]. According to neurobiological models 
of addiction, memory processes play a crucial role in the 
development and maintenance of drug abuse [11, 30, 31]. These 
models highlight the critical role of associative and conditioned 
learning processes through which repeated reward experiences 
become paired with antecedent environmental stimuli. Over 
time, neural response to reward occurs in anticipation of the 
drug whenever drug-associated stimuli are encountered [31]. 
We posit that explicit memory processes such as recognition 
memory, which occur simultaneously with reward network 
activation, may pave the path to, and continue to interact with, 
the non-effortful associative memory processes through which 
drug cues develop salience over time.

That is, explicit memory for environmental stimuli such as 
visual drug paraphernalia, locations of use, and social aspects of 
use would be an initial form of experience-dependent learning 
that occurs prior to reward experiences being repeatedly 
paired with environmental stimuli. Then, as many experiences 
of reward become mapped to cues during repeated episodes 
of drug use, these stimulus cues acquire salience to that 
individual. The present results suggest that explicit memory 
processes such as recognition accuracy remain operative 
in parallel with the anticipatory brain responses that have 
been observed to conditioned stimuli [31] in chronic cocaine 
users. Future studies using an effective connectivity analysis 
approach are needed to examine the causal relationship 
between the recollection-based and drug cue reactivity-related 
brain areas while a cocaine user is engaged in memory tasks 
[32, 33].

The one previous addiction neuroimaging study that examined 
explicit recognition memory in cocaine users (HIV-infected) 
observed that activation in bilateral prefrontal cortex, 
specifically the frontal medial cortex, was significantly higher 
in women who had never used cocaine (compared to current 

and former crack cocaine users) during recognition of neutral 
verbal stimuli [9]. Our results, however, did not show any 
increased activation in control participants (compared to 
cocaine users) while recognition accuracy was measured for 
neutral stimuli, even when the activation was set at the lowest 
threshold. The discrepancy in findings may be explained 
by differences between Meyer et al. and the present study. 
In Meyer et al.’s sample, brain effects of cocaine smoking 
were complicated by HIV status, which is also associated 
with neural changes [9]. As well, Meyer and colleagues used 
neutral verbal stimuli, whereas the present study compared 
recognition accuracy of cocaine compared to neutral picture 
stimuli. In addition, Meyer et al. [9] sample included all 
women and some of them were not using cocaine currently.

It should be noted that the present results represent recollection-, 
rather than familiarity-, based recognition memory. According 
to dual process theories of recognition, recognition memory 
judgments can rely on two distinct processes: recollection and 
familiarity [27, 34, 35]. Recollection is thought to be an explicit, 
attention demanding search process, whereas familiarity is a 
more implicit, automatic process. Specifically, recollection 
entails conscious retrieval of details associated with an item 
when it was initially presented, whereas familiarity refers to 
the knowledge or awareness of a particular item, but not being 
able to recall specific information associated with its initial 
presentation [36] This distinction can be illustrated through a 
common experience such as recognizing an individual who is 
familiar, but not being able to recollect previous interaction(s) 
with him/her. In this study, during the test phase, participants 
explicitly were asked to indicate whether or not they had 
previously seen the cues during the study phase. This task 
entails a conscious retrieval of the information, that is, whether 
or not the cue was present in the study phase [36]. The fact 
that the present recognition memory task was recollection-
based is further supported by a lack of observed activation in 
brain areas such as precuneus, bilateral middle occipital, and 
left fusiform gyrus that have been associated with familiarity-
based recognition memory [6].

Consistent with the imaging data, the behavioral data from 
the recognition memory task showed that the cocaine (vs. 
control) group had significantly greater recognition accuracy 
for cocaine picture cues. No group differences were observed 
in recognition accuracy for neutral picture cues. Thus, the 
behavioral data indicated that recognition memory processing 
in chronic cocaine users is biased towards appetitive cocaine 
cues. The present results extend Wiers and colleagues [37] study 
that demonstrated increased explicit cocaine-related memory 
associations in a group of treatment seeking cocaine-dependent 
polysubstance users compared to control participants by using 
an expectancy questionnaire and verbal stimuli. The equivalent 
recognition memory performance for the neutral picture cues 
between the two groups in the current study is consistent with 
the results of Simon and colleagues [38] who also observed 
no significant difference between a treatment seeking cocaine 
and a control group in terms of recognition memory for neutral 
picture cues. The study has several strengths: first, all cocaine 
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smokers were current cocaine users with confirmed abstinence. 
Second, the cocaine and the control groups were matched in 
terms of age, educational and ethnic/racial background. A few 
caveats should also be considered in interpreting the results of 
this study. First, frequency of alcohol use was about double 
in the control compared to the cocaine group (4 days/month 
versus 1.9 days/month). Nonetheless, average alcohol use was 
low for both groups (<1 drink/day). 

Second, there were not enough female cocaine smokers (n=5) 
to examine the influence of sex on recognition memory for 
cocaine related picture cues behaviorally or in terms of brain 
functioning. Future studies would benefit from including 
larger numbers of women to examine potential sex differences 
in explicit memory processing of drug cues in different drug 
populations using both behavioral and imaging paradigms. 
Despite these limitations, the present fMRI and behavioral 
results provide a valid test of explicit recognition memory 
for cocaine picture cues in a group of non-treatment seeking 
cocaine users without other known neurological disease. 
Generalizability of the present findings can be tested in future 
studies with other drug abusing samples. In conclusion, this 
study suggests that better understanding of the interplay 
between effortful explicit memory processes, reward network 
activation and the non-effortful associative learning processes 
which contribute to development of drug cue salience will 
be helpful in developing better prevention and intervention 
strategies for individuals with cocaine use and other substance 
use disorders.
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