The Potential of Zeolites to Block the Uptake of Radioactive Strontium-90 in Organisms

Shital Ovhal1, Ian S. Butler1* and Sikun Xu2

1Department of Chemistry, McGill University, 801 Sherbrook Street West, Montreal, Quebec, Canada H3A 2K6
2Chalk River Laboratories, Atomic Energy of Canada Limited, Chalk River, Ontario, Canada K0J 1J0

Abstract
Zeolites have numerous environmental and industrial applications in which they function as molecular sieves, ion-exchangers, absorbers, catalysts, and even detergent builders. While several general reviews about zeolites are available in the literature, the sorption characteristics of the natural and synthetic zeolites, which could possibly be used in blocking the uptake of ingested radioactive 90Sr in organisms, have not been described previously.

Keywords: Modified zeolites, Absorption, Radioactive strontium-90, SEM: Scanning Electron Microscopy; AECL: Atomic Energy Canada Limited.

Introduction
Zeolites comprise a group of natural or synthetic, micro porous, hydrated aluminosilicate minerals containing alkali and alkaline metal ions. Formally, zeolites belong to a class of minerals known as “tectosilicates”. The term zeolite was first proposed in 1756 by Axel Cronstedt, a Swedish mineralogist, who observed that when stilbite, NaCa4(Si27Al9)O72.28H2O, was heated, steam was produced. He came up with the name zeolite from the Greek zoe meaning “to boil” and lithos meaning “stone”. A common description of a zeolite today, based on the definition of Armbruster and Gunter [1] is: A zeolite mineral is a crystalline substance with a structure characterized by a framework of linked tetrahedra, each consisting of four O atoms surrounding a cation. This framework contains open cavities in the form of channels and cages. These cavities are usually occupied by H2O molecules and extra framework cations that are commonly exchangeable. The channels are large enough to allow passage of guest species. In the hydrated phases, dehydration occurs at temperatures mostly below 400 °C and is largely reversible. The framework may be interrupted by OH and F groups, which occupy an apex of a tetrahedron that is not shared with adjacent tetrahedra.

Three main types of sorbents have been identified: (1) inorganic materials (zeolites, clays and silica); (2) carbon-based adsorbents (activated carbon, graphite, carbon molecular sieves and pre-shaped carbon fibers and nanotubes); and (3) organic polymers. In the case of zeolites, over 200 different types have so far been identified [2] and about 40 of these occur naturally. Zeolites can be sub-classified into four molecular sieve groups based on their pore ring sizes: ultra-large (>14-membered rings), large (12-membered rings), medium (10-membered rings) and small (8-membered rings). Zeolites with medium and large pores are mostly used in catalysis since ready diffusion of molecules within the pores means that they can reach the catalytically active sites more easily. Zeolites with a high concentration of cation exchange sites and small pores are more suitable for sorption processes. Moreover, zeolites with precise pore shapes are useful in systems where molecular recognition is needed.

Zeolites are highly hydrophilic sorbents owing to their charged frameworks and the presence of large amounts of alkali and alkaline earth cations. Synthetic zeolites prepared without any Al3+ ions built into their structures, however, exhibit hydrophobic characteristics [3, 4]. Most zeolites (especially those with high Al3+ content) show type-I water sorption isotherms reflecting their high affinity for water at low partial pressures. Water sorption capacity is generally proportional to pore size. Large-pore aluminosilicate zeolites (Na+ forms), such as ZSM-20, which has 12-membered rings, have the highest capacities for water absorption. Natural zeolites are found where volcanic rocks and ash layers have interacted with alkaline ground water. Zeolites are often present in marine basins. The ability of zeolites to sorb heavy metal species and radionuclides from aqueous media is especially important in environmental applications. The necessity for the removal of radioactive 90Sr from aqueous systems by clay minerals and...
zeolites was quickly realized following the development of the nuclear power industry.

Structure of natural zeolites

Zeolites are comprised of three components—an aluminosilicate framework, alkali and alkaline earth cations, and water molecules of crystallization. The general formula of a zeolite may be written as $M_x[(Al, Si, O_{2x+y})_y] \cdot nH_2O$, where $M=Na^+$, K^+ or Li$^+$ and/or Ca^{2+}, Mg^{2+}, Ba^{2+} or Sr^{2+}; n is cation charge, $y/x = 1-6$ and $p/x = 1-4$. The basic building block of a zeolite is a tetrahedron with Si$^4+$ or Al$^{3+}$ ions located at the centre of the tetrahedron and four O$^2-$ ions at the vertices. Substitution of Si$^4+$ by Al$^{3+}$ leads to a negative charge on the zeolite framework, which is compensated for by the presence of monovalent or divalent cations in the structure. The water molecules are in the empty spaces in the cavities in the structure or are bridged between Si$^4+$ and Al$^{3+}$ ions. The structures of zeolites therefore consist of three-dimensional frameworks of linked $[SiO_4]_4^4-$ and $[AlO_4]_4^4-$ tetrahedra.

The two most common commercial zeolites being used as sorbents are zeolite-A and zeolite-X. The pore sizes of these materials can be fine-tuned by the appropriate choice of cations. For example, the Na$^+$ form of zeolite-A has a pore size of ~4Å (hence the term 4Å molecular sieve). When Na$^+$ is replaced by K$^+$, the pore size is ~3Å (3Å molecular sieve). In the case of Ca$^{2+}$, which can replace two Na$^+$ or K$^+$ ions, the pore opening is ~5 Å. Most natural zeolites are used to selectively adsorb molecules from air or liquids [5]. It is less expensive to mine natural zeolites than to synthesize them—natural zeolites cost about 80-90% less than do synthetic zeolites. The exchangeable cations Na$^+$, Ca$^{2+}$, Mg$^{2+}$ and K$^+$ are relatively safe for humans, plants and animals, which further promotes their extensive commercial use. Among the major uses of natural zeolites are pet litter, animal feed, agriculture, oil absorbers, odor control, desiccants, pesticide carriers, water purification, aquaculture, wastewater cleanup, gas absorbent and catalysts [6]. Pet litter, animal feed and agricultural applications account for more than two-thirds of worldwide sales. Zeolites containing Na$^+$, K$^+$ and Ca$^{2+}$ are particularly useful in the removal of undesirable heavy metal ions from industrial effluents. In fact, one of the earliest applications of natural zeolites was in the removal Cs$^+$ and Sr$^{2+}$ radioisotopes [7]. Natural zeolites are rarely pure and are usually contaminated by other minerals (including other zeolites), metal ions, and even quartz. Zeolites rich in Al$^{3+}$ ions are being exploited as desiccants because of the large number of hydrophilic sites present and the resulting increased water sorption capacity.

Types of zeolites

Seven of the 63 naturally occurring zeolites are found in quite large quantities, i.e., analcime, chabazite, clinoptilolite, erionite, mordenite, phillipsite and ferrierite. All these zeolites can be synthesized, but only mordenite and ferrierite are produced in any significant quantities.

Examples of some natural zeolites

The chemical formulae and structural types (including the space group symmetry) of some common zeolites are given in ref [8]. Some specific properties of a few natural zeolites are described below.

Analcime or analcite

Analcime is a white, grey or colourless tectosilicate consisting of sodium aluminium silicate having a cubic crystalline structure. Although it is classified as a zeolite, it is more like the feldspathoids. It occurs chiefly in the form of the mineral analcime basalt [9].

Chabazite

Chabazite is a tectosilicate mineral that is closely related to gmelinite. It is found in many different colours (colourless, white, orange, brown, pink, green or yellow) and it crystallizes in the triclinic system with a rhombohedral shape. Its hardness falls in the 3-5 Moh range [10].

Clinoptilolite

Clinoptilolite occurs as white-to-radish, monoclinic tectosilicate crystals, with a hardness of 3.5-4 Moh. Its microporous structure is resistant to extreme pressures. High temperatures are required to melt the material and it is unaffected by treatment with strong acids or alkalis. It is commonly found in basalts, andesites and rhyolites in the form of glass shards in compressed volcanic ashes known as tuffs. Clinoptilolite has been used extensively in industry, e.g., in an ion-exchange system for NH$^+$ ions in an enzyme-based urea sensor. Because of its high cation-exchange capacity, it has found uses in water purification and as an additive to animal feeds. Clinoptilolite tuffs have also been employed in underground nuclear weapons testing [11, 12]. In addition, Zanin et al. have used natural clinoptilolite as an adsorbent for the removal of heavy metals such as a Cu$^{2+}$, Cr$^{3+}$ and Fe$^{3+}$ ions from the wastewater in the graphic industry [13].

Erionite

Erionite is a fibrous, naturally occurring zeolite that has a hexagonal, cage-like structure. The structure forms chains of indefinite length with six (Si, AlO_4) tetrahedra on each edge. This zeolite is found as white prismatic crystals that can absorb up to 20% of their weight in water. It has a specific gravity of 2.02-2.08 and has gas absorption, ion exchange and catalytic properties that are highly selective and dependent on the molecular sizes of the compounds being sorbed. It is no longer mined for commercial purposes, although erionite-rich blocks have sometimes been used in building houses in the western United States [14].

Mordenite

Mordenite crystallizes as white, faintly yellow or pink fibrous delicate aggregates of prismatic crystals. Its hardness and density are 5 Moh and 2.1 g/cm3, respectively. The molecular structure consists of a framework of chains of five-membered rings of linked (Si, AlO_4) tetrahedra. Its high Si/Al atom ratio leads to it being particularly resistant to attack by acids when compared to most other zeolites. It is used in many chemical processes such as gas fractionation.
materials that behave consistently, and synthetic zeolites have been identified. Because of the enormous industrial applications, it is used as a sorbent and in molecular sieves. Gas separation processes utilizing mordenite are well known to produce high-grade O₂ from air and there are commercial plants based on mordenite-rich tuffs that have been operating in Japan for over 50 years. Because of its fibrous nature, however, it does pose a possible health risk as do erionite and asbestos [15, 16]. Consequently, the crystalline morphology of mordenite-bearing sedimentary rocks is usually examined by scanning electron microscopy (SEM) prior to use.

Phillipsite

Phillipsite occurs as colorless or pale-yellow crystals in basalt cavities throughout the world. The prismatic crystals range in size from 2 to 400 μm and are mostly twinned [17]. The mineral is found in fine-grained pelagic sediments, such as brown clay and various oozes, and is commonly associated with clinoptilolite, palagonitic glass, smectite, smectite, and ferrierite-K, which are often associated with mordenite and clinoptilolite, and ferrierite-Mg, ferrierite-Na and ferrierite-K, which are often associated with mordenite and clinoptilolite, and occasionally with opal, chalcedony and calcite [23]. Important applications of synthetic ferrierites include their uses as commercial filters and in ion-exchange treatment because of their excellent ion-exchange capacities. Nowadays, only a few of the approximately 180 known phillipsite frameworks are being used to any great extent in industry [28]. Interestingly, synthetic mordenite has larger pores than does natural mordenite.

Apart from mordenite and ferrierite, the main industrial synthetic zeolites are Linde Type-A, -X and -Y (Al-rich and Si-rich), Silicates-1 and ZSM-5 (MFI) and Linde Type-B (Zeolite P). Several other synthetic zeolites are commercially available, including Beta, Linde Type-F, -L and-W, and SSZ-32, which are either aluminosilicates or pure silica analogs. Recently, Moamen et al. have reported the synthesis of a nano-sized zeolite, which they used for the removal of Cs⁺ and Sr²⁺ ions from aqueous solutions [29]. Similarly, Shilina et al. have prepared an aluminosilicate zeolite-like adsorbent, which has been applied for the efficient removal of heavy metals and radionuclides from aqueous solution [30].

Aluminophosphates

Several non-aluminosilicatesynthetic molecular sieves have now become available commercially including aluminophosphates (AIPO₄ structures), silicoaluminophosphates (SAPO family), various metal-substituted aluminophosphates (meAPO family, such as CoAPO-50AFY) and other microporous framework structures, such as crystalline silicotitanates. Over 30 types of AIPO₄ materials have been synthesized [2] and the AlPO₄ frameworks are neutral. There are no other cations present in these materials, which accounts for their poor ion-exchange properties [31]. AlPO₄ molecular sieves are expected to have weak catalytic and sorption properties because of the low concentration of surface OH groups. If P atoms in the framework are replaced by Si or metallic atoms, however, new properties should be generated [32-36]. Most AIPO materials are not hydrothermally stable, but several of them, e.g., AIPO-5, remain structurally intact after heating at high temperatures (<600 °C) [37]. AIPOs sorb water, even at low pressures [38-39]. AIPOs can be categorized as dense or very small pore (4-6-membered rings of diameter ~3 Å), small pore (8-membered rings of diameter ~4 Å), medium pore (10-membered rings of diameter ~6 Å), large pore (12-membered rings of diameter ~8 Å), and giant pore (16-membered rings of diameter ~12 Å). AIPOs are known for their excellent sorption properties and have been used in various applications, such as separation of gases, selective adsorption of molecules, and as catalysts.

Examples of synthetic zeolites

There are approximately 40 naturally occurring zeolites that have been identified. Because of the enormous industrial demands for these materials, it is difficult to find enough of the materials that behave consistently, and synthetic zeolites are now being extensively used [24]. The earliest work on synthetic zeolites goes back to the 1940s [25]. There are many synthetic zeolites known, some of which have no natural counterpart. When compared to natural zeolites, synthetic zeolites are purer and have more uniform pore sizes resulting in them having better ion-exchange capacities and behavioral predictability. Over 180 synthetic zeolites have now been classified, including the well-known zeolite-A, -X, -Y and ZSM-5 [26]. Gas and oil companies, such as Linde, Mobil and Exxon, have had a considerable interest in the production of large quantities of synthetic zeolite-A and-X, NaY, mordenite, zeolite-L, erionite, chabazite and clinoptilolite for gas purification and separation studies [27]. One major area of interest has been the use in the bulk separation of paraffins, xylene isomers and olefins. Zeolite-A and -X have also been employed in the detergent industry and in radioactive and industrial liquid waste treatment because of their excellent ion-exchange capacities. Currently, the most widely used synthetic zeolites are Zeolite-A and -X, ZSM-5, SAPO-34, SAPO-11, and SSZ-32. Zeolite-A and -X are the most commercially used zeolites, primarily for their ability to selectively adsorb hydrocarbons and water vapor. Zeolite-A is used in the petroleum industry for the removal of water and sulfur compounds from gasoline. Zeolite-X is used for the purification of natural gas and for the removal of water and sulfur compounds from coal gasification products.

Ferrierite (FER)

Significant deposits of ferrierite minerals are located at Kamloops Lake in Canada and Leavitt Lake in California. The name ferrierite stems from that of its discoverer, the Canadian geologist/mining engineer, Walter Ferrier (1865-1950). The three main ferrierite minerals are ferrierite-Mg, ferrierite-Na and ferrierite-K, which are often associated with mordenite and clinoptilolite, and occasionally with opal, chalcedony and calcite [23]. Another major use is in the acid-catalyzed isomerization of n-butene to isobutene, the starting material for the commercial production of methyl-t-butyl ether (MTBE), which is used as an anti-knock agent in gasoline.
Applications of natural and synthetic zeolites

As mentioned earlier, zeolites are now widely used industrially because of their thermal stability, acidity, surface hydrophobicity/hydrophilicity, ion-exchange capacity, low density, large void volume, uniform molecular-sized channels suitable for gas and vapor adsorption, and their catalytic properties. Zeolites are becoming increasingly important in several environmental applications, but especially in water purification for the removal of NH₄⁺ ions, radioactive and heavy metal species, and organic substances.

Role of zeolites in catalysis

The first report of NaA zeolite being used in the separation of normal and isoalkanes appeared in the 1950s from the Linde Company. A few years later, X-and Y-zeolites were introduced as catalysts for petroleum cracking reactions. Since then, NaA, NaX and NaY have been extensively used by all the major oil companies in numerous reactions, e.g., cracking, alkylation, isomerization, shape-selective reforming, hydrogenation and dehydrogenation, and methanol-to-gasoline conversion. These highly porous materials have also found use in the detergent industry, in the removal of CO₂ from natural gas, and in the separation of xylene isomers and of O₂/N₂ in the removal of CO and also PO₄³⁻[46], H⁺ [47], CO₂, CH₄ and N₂ [48], NOx [49], N₂ and O₂ [50], and volatile nitrosamines [51].

Appreciable social and environmental problems have surfaced recently throughout the world because of restricted landfill capacity—nobody wants any problematic materials stored in or near their homes. Polluted water and the limited access to clean water are already major crises, especially in under-developed countries. One successful solution is to use zeolites to overcome problems in water purification and soil conditioning [52, 53]. Research is mainly being concentrated on the application of fly ash-based zeolites in the removal of heavy metal and other ions [54], NH₄⁺ [55], Cs⁺ [56] and As⁺³ and Cr⁶⁺ [57]. A polyacrylonitrile/Na-Y-zeolite composite with amidoxime groups has been used for the sorption of Cu²⁺, Cd²⁺ and Pb²⁺ metal ions [58]. In some other work, Moamen et al. have synthesized magnetic nano zeolite materials, for the sportive removal of ions from radioactive wastewater [59]. Also, Alswata et al. have reported the preparation of zeolite/zinc oxide Nano composites that are useful for the absorption of Pb²⁺ and As⁺³ ions from aqueous solution [60].

Table 1 lists some research articles published during 2008–2018 on the removal of Sr from aqueous solution, wastewater, and radioactive waste by adsorption. There are different types of adsorbents used, e.g., natural and synthetic zeolites, modified zeolites, nanomaterials, nanocomposites, inorganic materials, and biopolymers.

<table>
<thead>
<tr>
<th>No.</th>
<th>Objective</th>
<th>Type of adsorbent</th>
<th>Reference</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Strontium⁹⁰Sr removal from seawater and evaluation of Sr adsorption performance</td>
<td>Zeolite-alginate foam composite</td>
<td>H.-J. Hong et al.</td>
<td>2018</td>
</tr>
<tr>
<td>2</td>
<td>For the efficient removal of strontium ions from aqueous solution</td>
<td>Fabrication of alginate/humic acid/Fe₃O₄ NPs-FeOx composite</td>
<td>S.R. Choe et al.</td>
<td>2018</td>
</tr>
<tr>
<td>3</td>
<td>Removal of Sr²⁺ from aqueous solutions: Kinetic, equilibrium, and thermodynamic studies</td>
<td>Preparation of magnetic clinoptilolite/CoFe₂O₄ composite</td>
<td>Y. Huang et al.</td>
<td>2017</td>
</tr>
<tr>
<td>4</td>
<td>Removal of strontium-90 (⁹⁰Sr) from water samples: Kinetics and thermodynamic reactions study</td>
<td>MnO₂ NPs-AgX zeolite composite</td>
<td>M. Sadeghi et al.</td>
<td>2017</td>
</tr>
<tr>
<td>5</td>
<td>Removal of cesium and strontium ions from aqueous solution</td>
<td>Modified hydroxyapatite</td>
<td>S.S. Metwally et al.</td>
<td>2017</td>
</tr>
<tr>
<td>6</td>
<td>Strontium removal from wastewater</td>
<td>Ba-titanate material</td>
<td>C. Guévar et al.</td>
<td>2017</td>
</tr>
<tr>
<td>7</td>
<td>Enhanced Sr adsorption performance from seawater and evaluation of its mechanism</td>
<td>MnO₂-alginate beads</td>
<td>H.-J. Hong et al.</td>
<td>2017</td>
</tr>
<tr>
<td>8</td>
<td>Efficient removal of Cs⁺ and Sr²⁺ from aqueous solution</td>
<td>Hexagonal tungsten trioxide coated Fe₂O₄</td>
<td>W. Mu et al.</td>
<td>2017</td>
</tr>
<tr>
<td>9</td>
<td>Removal of strontium from aqueous solutions and synthetic seawater</td>
<td>Resorcinol formaldehyde polycondensate resin</td>
<td>T. Nur et al.</td>
<td>2017</td>
</tr>
<tr>
<td>10</td>
<td>Strontium sorption from the water solutions in static conditions</td>
<td>Clinoptilolite and synthetic zeolite</td>
<td>V.V. Levenets et al.</td>
<td>2016</td>
</tr>
<tr>
<td>12</td>
<td>Removal of strontium(II) and cobalt(II) from acidic solution</td>
<td>Manganese antimonate</td>
<td>L. Zhang et al.</td>
<td>2016</td>
</tr>
<tr>
<td>13</td>
<td>Study of the sorption properties of strontium ions</td>
<td>Mesoporous manganese oxides</td>
<td>A.I. Ivanets et al.</td>
<td>2016</td>
</tr>
<tr>
<td>14</td>
<td>Strontium ion (Sr$^{2+}$) separation from seawater</td>
<td>Titanate nanotubes</td>
<td>J. Ryu et al.</td>
<td>2016</td>
</tr>
<tr>
<td>15</td>
<td>Removal of strontium (Sr) from seawater</td>
<td>Alginate/Fe$_3$O$_4$ composite</td>
<td>H.-J. Hong et al.</td>
<td>2016</td>
</tr>
<tr>
<td>16</td>
<td>Removal of Sr(II) from aqueous solutions</td>
<td>PPy@NiO nano-particles</td>
<td>V. Srivastava et al.</td>
<td>2016</td>
</tr>
<tr>
<td>20</td>
<td>Efficient static and dynamic removal of Sr(II) from aqueous solution using</td>
<td>Chitosan ion-imprinted polymer functionalized with dithiocarbamate</td>
<td>F. Liu et al</td>
<td>2015</td>
</tr>
<tr>
<td>21</td>
<td>Strontium removal from wastewater</td>
<td>Recycled iron oxide</td>
<td>Y.-J. Tu et al.</td>
<td>2015</td>
</tr>
<tr>
<td>22</td>
<td>Strontium(II) adsorption</td>
<td>Sb(III)/Sb$_2$O$_5$</td>
<td>L. Zhang et al</td>
<td>2015</td>
</tr>
<tr>
<td>23</td>
<td>Study of the adsorption properties for Sr(II) and Co(II) ions</td>
<td>Graphene oxide–magnetite</td>
<td>A. Tayyebi et al.</td>
<td>2015</td>
</tr>
<tr>
<td>24</td>
<td>Study the adsorption characteristics of strontium</td>
<td>Antimony silicate</td>
<td>L. Zhang et al</td>
<td>2015</td>
</tr>
<tr>
<td>25</td>
<td>Investigation of strontium and uranium sorption</td>
<td>Zirconium-antimony oxide/polyacrylonitrile (Zr-Sb oxide/PAN) composite</td>
<td>P. Cakir et al.</td>
<td>2014</td>
</tr>
<tr>
<td>26</td>
<td>Strontium adsorption</td>
<td>Tantalum-doped hexagonal tungsten oxide</td>
<td>X. Li et al.</td>
<td>2014</td>
</tr>
<tr>
<td>28</td>
<td>Removal of Cs$^+$ and Sr$^{2+}$ from aqueous solutions</td>
<td>Magnetic zeolite composite</td>
<td>M. Iravani</td>
<td>2014</td>
</tr>
<tr>
<td>29</td>
<td>Removal of Cs$^+$ and Sr$^{2+}$ from aqueous solution</td>
<td>Magnetic zeolite nanocomposite</td>
<td>H. Faghihian et al.</td>
<td>2013</td>
</tr>
<tr>
<td>30</td>
<td>Removal of Cs$^+$ and Sr$^{2+}$ from aqueous solutions: Kinetic, equilibrium, and thermodynamic studies</td>
<td>PAN–zeolite nanocomposite</td>
<td>H. Faghihian et al.</td>
<td>2013</td>
</tr>
<tr>
<td>31</td>
<td>Removal of radionuclide Sr$^{2+}$ ions from aqueous solution</td>
<td>Magnetic chitosan beads</td>
<td>J. Wang et al.</td>
<td>2012</td>
</tr>
<tr>
<td>32</td>
<td>Removal of radioactive strontium from aqueous wastes</td>
<td>Synthetic sodium nonatitanate and zeolite A</td>
<td>A. Merceille et al.</td>
<td>2012</td>
</tr>
<tr>
<td>33</td>
<td>Study of the adsorption properties</td>
<td>Strontium Granulated NaY zeolite nanoparticles</td>
<td>A. Charkhi et al.</td>
<td>2012</td>
</tr>
<tr>
<td>34</td>
<td>Removal of radioactive strontium from aqueous effluents: Application to the case of Fukushima</td>
<td>Macroporous LTA-monolites</td>
<td>A. Sachse et al.</td>
<td>2012</td>
</tr>
<tr>
<td>35</td>
<td>Application on strontium removal from aqueous solution</td>
<td>Tin (IV) molybdophosphate onto mesoporous silica SBA-15</td>
<td>H. Aghayan et al.</td>
<td>2012</td>
</tr>
<tr>
<td>36</td>
<td>Study the sorption from cobalt and strontium aqueous solution</td>
<td>Moss Rhytidia delphus squarrosus</td>
<td>J. Marešová et al.</td>
<td>2011</td>
</tr>
<tr>
<td>37</td>
<td>Removal of strontium(II) ions by from aqueous solution</td>
<td>Potassium tetratitanate whisker and sodium titanatinate whisker</td>
<td>W. Guan et al.</td>
<td>2011</td>
</tr>
<tr>
<td>38</td>
<td>Removal of Co$^{2+}$, Sr$^{2+}$ and Cs$^+$ from aqueous solution by</td>
<td>Phosphate-modified montmorillonite (PMM)</td>
<td>B. Ma et al.</td>
<td>2011</td>
</tr>
<tr>
<td>39</td>
<td>Investigation of Sr(II) sorption by experimental design</td>
<td>Zirconium–manganese oxide/polyacrylonitrile (Zr–Mn oxide/PAN)</td>
<td>S. Inan, Y. Altas</td>
<td>2011</td>
</tr>
<tr>
<td>40</td>
<td>Study the sorbing barrier for strontium in a radioactive disposal facility</td>
<td>Synthetic zeolite Na A–X</td>
<td>R.O.A. Rahman et al.</td>
<td>2010</td>
</tr>
<tr>
<td>41</td>
<td>Study of strontium adsorption behaviours</td>
<td>ZrO$_2$ and ZrO$_2$–TiO$_2$ microspheres</td>
<td>H. Tel et al</td>
<td>2010</td>
</tr>
<tr>
<td>42</td>
<td>Removal of cobalt, strontium and cesium from radioactive laundry wastewater</td>
<td>Ammonium molybdophosphate–polyacrylonitrile (AMP–PAN),</td>
<td>Y. Park et al</td>
<td>2010</td>
</tr>
<tr>
<td>43</td>
<td>Adsorption study of the Strontium and calcium ion</td>
<td>Molecularly imprinted hybrid gel</td>
<td>Q. Li et al</td>
<td>2010</td>
</tr>
<tr>
<td>44</td>
<td>Removal of strontium from aqueous solutions and kinetic and thermodynamic studies</td>
<td>Activated carbon</td>
<td>S. Chegrouche et al.</td>
<td>2009</td>
</tr>
<tr>
<td>45</td>
<td>Comparison of strontium and calcium adsorption</td>
<td>Composite of magnetic particles derived from Fe$_3$O$_4$ and bis(trimethoxysilylpropyl)amine</td>
<td>X. Ye et al.</td>
<td>2008</td>
</tr>
<tr>
<td>46</td>
<td>Removal of Cs$^+$ and Sr$^{2+}$ ions from aqueous solutions using batch and fixed bed column operations</td>
<td>Zeolite A</td>
<td>A.M. El-Kamash</td>
<td>2008</td>
</tr>
</tbody>
</table>

Table 1: Articles published on 90Sr sorption onto modified zeolites, inorganic materials, Nano composites and biopolymers over the past 10 years
Role of zeolites in ion-exchange systems

Zeolites play a crucial role in the removal of NH+ ions from wastewater [61]. Montegut et al. have studied the cation-exchange properties of the zeolites. They used two natural and one synthetic zeolite for their work, viz., clinoptilolite, chabazite and NaX faujasite, respectively, for the removal of NH+ and K+ ions from swine liquid manure [62]. For the thermal energy storage, P. Aprea et al. have synthesized Sr-, Zn- and Cd-exchange zeolitic materials as water vapor adsorbents [63]. R. Tekin, N. BAC has described the use of ion-exchanged zeolite X containing fragrance for antimicrobial behavior study [64]. These materials are also useful for the removal of cationic and anionic pollutants, such as Cr6+ and As3+ [65], Cu2+, Pb2+ and Cd2+ [66], Fe3+ and Zn2+ [67], and Sr2+ [68]. Some 68 current research papers have described the interaction of synthetic zeolites with Cs+ [69], UVI [70] and Sr2+ [68] in particular.

Some disadvantages of zeolites

The synthesis of zeolites and aluminophosphates is well developed and materials with special properties, such as high catalytic activity, good adsorption or ion exchange behavior, optical transparency and adequate guest incorporation, can be readily produced. The purity of the adsorbents is a problem that needs to be overcome. The zeolite frameworks often contain B, Al, Ga, Si and P atoms bridged by oxygen atoms. Many of these materials are insulators. Another disadvantage of zeolites is that metal uptake is often limited to a few percent. An attempt to overload the zeolites leads to collapse of the framework. This is a critical factor for catalytic applications [71].

The literature on the medical applications of natural or synthetic zeolites is much less by comparison with other applications. Natural zeolites, such as clinoptilolite or clays, are used for various medical applications, e.g., as anti-parasitary, antibiotic [72] and anticancer drugs [73]. Zeolites play an important role with respect to the acidic conditions in the stomach. The optimum pH value in the stomach lies between 3 and 4. At a pH less than 4, the crystal structures of the zeolites may be subject to hydrolysis and then destroyed releasing Na+ ions, silicic acid and aluminium salts, which may be taken up in the gastrointestinal area [74].

Antacids are used to control the pH in the stomach, which is the result of changes in the HCl concentration [75]. Generally, antacids are composed of a combination of metallic compounds, such as Al and Mg hydroxalates, which gradually hydrolyze thereby controlling the pH at an optimum value [76]. Purified natural clinoptilolite NZ from the Tasajera deposit, in Cuba, has been used as an active ingredient in the new antacid drug Neutacid, which was developed by Rodriguez-Fuentes et al. [77]. These authors reported that clinoptilolite NZ zeolite does not exhibit any harmful toxic hazards towards human beings. Furthermore, they observed that the neutralizing effect of clinoptilolite NZ is a result of proton exchange and hydrolysis of the species present in the zeolite. Wei et al. have also employed zeolites in NO (nitric oxide) delivery materials in biological systems [78]. They have described the use of moisture-saturated zeolites for the release of NO to cure ulcers inside the stomach and/or intestines, which were caused by bacterial infection. In addition, Reeve and Fallow field have investigated microbial toxicity using HDTMA-Br modified zeolites [79].

Blocking of radioactive strontium using zeolites: An overview

Selection of a candidate for further testing

Strontium-containing materials have been known since 1790 [80]. It was only in 1948, however, that radioactive \(^{90}\text{Sr}\) (\(t_{1/2} = 28.79\) years; soft \(\beta\)-emitter, 0.5460 MeV) was reported as one of the products from the neutron fission of 233U [81]. Since Sr is in the same group of the Periodic Table as is Ca, it has similar chemical properties, forming a slightly soluble carbonate and sulphate. Moreover, because it is susceptible to cation exchange reactions, \(^{90}\text{Sr}\) is strongly sorbed into clays and various organic matters [82]. Strontium metal reacts violently with water and ignites spontaneously in air to produce SrO and Sr\textsubscript{N}\textsubscript{2}. Strontium compounds are almost always present in the atmosphere in the form of a fine dust resulting from coal and oil combustion. These dust particles eventually fall back to the Earth’s surface and are subsequently found in surface water and soils, and on plants. Strontium-90 is transported through soils by percolating water and it adheres to soil particles, especially sandy soils.

After uncontrolled or accidental releases of radioactive strontium, e.g., from nuclear testing events, or Chernobyl and Fukushima type incidents, the most important way of the transferring \(^{90}\text{Sr}\) to organisms is the consumption of contaminated water, vegetation and animal products. Radioactive strontium has reportedly been detected in various plants at many contaminated nuclear sites [83-86]. Following its uptake in the plants, strontium will be passed to organisms that feed on the plants and eventually on to humans. This pathway substantially contributes to the ingested radiation dose [87]. Once ingested, Sr2+ is produced under the acidic conditions in the stomach (pH 3-4). The Sr2+ ion closely parallels Ca2+ and is taken up through the gastrointestinal track in humans and animals, ultimately becoming part of bone marrow tissue and blood cells. Because \(^{90}\text{Sr}2+\) is readily incorporated into bone, it leads to the irradiation of the surrounding tissues and the onset of bone disease. For this reason, 90Sr is now regarded as one of the most hazardous nuclear fission products. The decay product of \(^{90}\text{Sr}\) is \(^{90}\text{Y}\), which is also a \(\beta\)-emitter further complicating the issue [88].

Owing to the Chernobyl accident, studies in Europe on blocking the uptake of ingested strontium have been concentrated on the reduction of strontium in the domestic animal products. Because of the similarity in their physical and chemical properties, strontium, including radioactive strontium and calcium are proportionally taken up in the food chain. As calcium is present as one of the major nutrients
in the diet in much larger quantities than is strontium. 40 to 60 % reduction in the strontium uptake in animals has been achieved by calcium supplementation in feedstuffs. However, the statistical data have shown that this method eventually becomes inefficient when the dietary calcium intake is greater than 100 g.d-1 for dairy cows and 20 g.d-1 for dairy goats; and further increasing the calcium supplement would only reduce the absorption of other essential nutrients [89, 90]. Doubling the quantity of stable strontium in feedstuffs has proved to be ineffective in the prevention of strontium uptake as its quantity is too small [91]. Several limited tests with modified and natural zeolites administered at 0.5 g.kg-1 live weight per day showed approximately 40% reduction of strontium uptake in the gastrointestinal environment [92, 93]. The zeolites tested were stable under low pH; however, the dissociation of strontium binding under the high pH in parts of the animal gut reduced the blocking efficiency. The blocking efficiencies of the methods studied thus far are limited below 60%. There have been no studies related to humans available in literature. Given the fact that only approximately 40% radioactive strontium can be removed from animal products, such as milk, finding effective methods to blocking the ingested radioactive strontium in humans has its significance.

Finding the best sorbent for blocking of strontium-90

Efforts to remove Co, Cs and Sr radionuclides from radioactive waste are receiving continued attention, especially with respect to the waste water produced in nuclear power plants. With this aim in mind, ammonium molydophosphate-polyacrylonitrile (AMP-PAN) has been studied for competitive adsorption [94]. Also, an ion-exchange material that consists of a composite of hydrous manganese oxide and polymethylmethacrylate (PMMA) has been exploited for the removal of strontium 90Sr from aqueous radioactive waste [95]. This composite should be amenable to column procedures for the removal of 90Sr from low-level radioactive waste solutions [96]. This observation is important since it has been long known that inorganic cation exchange materials are preferable to organic ones because of their better thermal stabilities [97]. Unfortunately, there is no obvious relationship between the selectivity of a zeolite for Sr 2+ and rate at which it can be adsorbed [98]. Organic materials are not well suited for the uptake of radioisotopes because of their poor radiation and thermal stabilities, and significant waste management cost. Most zeolites are unstable in acid environments, thus limiting their possible applications. The only really acid resistant zeolites are mordenite [99] and clinoptilolite [100, 101]. And the latter is well established as the only really acid resistant zeolites are mordenite [99] and clinoptilolite [100, 101]. And the latter is well established as the most common mineralizer for zeolites is the hydroxide ion OH-. Replacement of OH- by F- as the mineralizer leads to the production of zeolites in acidic media at pH ~5 because of the formation of SiF6 2- [139]. Zeolite syntheses in hydroxide media occur at high pH values (usually >11), while in fluoride media the pH is comparatively low (7-9) [140]. Less supersaturation occurs in fluoride media, which leads to controlled crystal growth and eventually more crystals [141-145]. Somewhat surprisingly, however, rapid crystallization in fluoride media (on a time-scale of hours) yields materials with no defects, while slow crystallization in hydroxide media (on a time-scale of weeks) produces materials containing many defects [141]. There has been relatively little research published on fluoride-silica-alumina zeolite minerals as catalysts, most probably because these materials are already highly active (as compared with Al2O3) for acid-catalyzed reactions [146]. Fluoridation greatly increases the activity of siliceous medium-pore zeolites, such as ZSM-5 [147].

Zeolite fluoridation is normally performed in either the gas phase using F2 or CHF3, or in aqueous HF or NH4F solution by acid-catalyzed reactions [146]. Fluoridation greatly increases the activity of siliceous medium-pore zeolites, such as ZSM-5 [147].
Organofluorides are suitable for zeolite syntheses since the C-F bond is stable under hydrothermal conditions provided that the pH and temperature are not too high [174]. Calcination in air removes the organic and fluorine components [175] opening the microporous voids in the zeolites, which remain highly crystalline. These same authors have also reported that it is possible to synthesize β- and ITQ-4 zeolites containing a wide range of Si/Al ratios (10-∞ for β and 20-∞ for ITQ-4) by properly adjusting the water content [176].

Degree of crystallinity, ion-exchange capacity and selectivity

Amorphous and crystalline impurities are inevitably present in commercially available natural zeolites and these are not considered as intrinsic constituents. Synthetic zeolites can be produced with negligible impurities. The degree of crystallinity can be determined from measurements of the relative intensities of the peaks in powder X-ray diffraction spectra when the reference and sample have a similar history of preparation and composition [177]. The ion-exchange capacities of zeolites and inorganic sorbents change significantly after thermal, hydrothermal and chemical treatments, and have a correlation with the degrees of crystallinity of the treated samples relative to their untreated precursors [178, 179]. The degree of crystallinity of a zeolite material is reduced following dealumination processes, such as acid extraction and hydrothermal treatment [180, 181]. The concentrated-acid treatment of clinoptilolite and mordenite materials with high Si/Al ratios, which are otherwise stable in mild acidic solution, leads to the partial breakdown of the frameworks and produces more Si-OH functional groups. Framework Al3+ ions associated with extra framework alkaline cations are more vulnerable to attack by acids as the alkaline cations are more easily replaced by hydronium ions [182]. Although the zeolite framework does undergo rearrangement during dealumination, more defects are created due to the loss of framework Al3+ ions and the associated extra framework cations. The ion-exchange capacities decrease with the decreasing degree of crystallinity of the treated materials. This situation is also found with zeolites after hydrothermal treatment for dealumination [183]. For zeolites with negligible framework Al3+ ions, there will be more stable ion-exchange processes in acid media without the extraction of framework Al3+ ions. Introducing fluoride to replace oxygen attached to aluminium will also hopefully lower the vulnerability of aluminium in typical acid media (e.g., HNO3 or HCl solutions).

Non-crystalline materials having a broad distribution of pore sizes and amorphous structures that allow ready access of cations of various sizes have shown poor ion-exchange selectivity [184]. If a zeolite loses part of its crystallinity in acid media, its selective sorption performance is expected to be weakened.

Conclusions

Zeolites having many cation exchange sites and small pores are suitable for sorption processes because of the molecular sieving effect. Most commercial uses of natural zeolites are
based on their ability to selectively adsorb molecules from air or liquids. The cost of the natural zeolites is usually substantially lower than is that of the cheapest synthetic zeolites. Owing to the impurity and contamination in natural zeolites, however, it has become important to synthesize large amounts of zeolites. Strontium-90 selectivity appears to decrease systematically with an increase in the Al/Si ratio, i.e., with decreasing silica content. Synthetic mordenite has large pores, whereas natural mordenite has small pores. AlPO molecular sieves will have only weak catalytic and sorption properties owing to the low concentration of surface OH groups. There appears to be no relationship between strontium selectivity of a zeolite and the rate at which it will remove strontium. Finally, because of their lower cost, high silica content and good cation exchange properties, both clinoptilolite and mordenite can be used to remove Sr$^{2+}$ in the environment. Fluoride ion acts as a good solubilizing agent with associated thermal stability. Fluorine modification is a useful method to control the acidity of a zeolite. Fluoride may be combined with the source of the framework element, such as (NH$_4$)$_2$SiF$_6$ or AlF$_3$H$_2$O, and be released on hydrolysis. For the synthesis of high-silica zeolites, fluoride media have resulted in substantial decreases in defects as compared to zeolites obtained by the hydrolysis route. By using the fluoride route, high-silica zeolites can be synthesized, even at acidic pH. Calcination in air leads to the removal of fluoride and organics. Thus, it is important to synthesize fluoride-modified zeolites at low temperatures and acidic pHs if one wants them to have good thermal stability, reasonable solubility, as well as loss defect sides. It is therefore suggested that fluoride-containing clinoptilolite and mordenite zeolites will be the best choice for sorbents required to block the uptake of ingested 90Sr in organisms and we plan to investigate this possibility in the future.

Acknowledgements

This review was prepared with the financial aid of a contract from Atomic Energy Canada Limited (AECL).

References

20. Weisenberger T, Spurgin S, Geolog Belg 12: 75-91. [View Article]

Relative X-ray Diffraction Intensities of Faujasite-Type Zeolite-Containing Materials. [View Article]

